Automatic trajectory classification has countless applications, ranging from the natural sciences, such as zoology and meteorology, to urban planning and sports analysis, and has generated great interest and investigation. The purpose of this work is to propose and test new methods for trajectory clustering, based on shape, rather than spatial position, as is the case with previous methods. The proposed approach starts by uniformly resampling the trajectories using splines, and then characterizes them using the angles of the tangents at the resampled points. Angular data introduces some challenges for analysis, due to its periodic nature, therefore preventing the direct application of common clustering techniques. To overcome this problem, three methods are proposed/adapted: a variant of the k-means algorithm, a mixture model using multivariate Von Mises distributions, which is fitted using the EM algorithm, and sparse nonnegative matrix factorization. Since the number of clusters is seldom known a priori, methods for automatic model selection are also introduced. Finally, these techniques are tested on both real and synthetic data, and the viability of this approach is demonstrated.
Shape-Based Trajectory Clustering
May 30, 2017
1:00 pm
Telmo Pires
Telmo Pires is a researcher at IT/Unbabel, where he is working in neural architectures for machine translation. His interests include machine learning, artificial intelligence and entrepreneurship, and he holds a MSc in Aerospace Engineering from Instituto Superior Técnico (University of Lisbon, 2016).IT/UnbabelSeminários
Últimos seminários
Unlocking Latent Discourse Translation in LLMs Through Quality-Aware Decoding
June 17, 2025Large language models (LLMs) have emerged as strong contenders in machine translation. Yet, they often fall behind specialized neural machine…
Speech as a Biomarker for Disease Detection
May 20, 2025Today’s overburdened health systems face numerous challenges, exacerbated by an aging population. Speech emerges as a ubiquitous biomarker with strong…
Enhancing Uncertainty Estimation in Neural Networks
May 6, 2025Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this presentation, I will present…
Improving Evaluation Metrics for Vision-and-Language Models
April 22, 2025Evaluating image captions is essential for ensuring both linguistic fluency and accurate semantic alignment with visual content. While reference-free metrics…



