Despite the recent success of state-of-the-art deep learning algorithms in object recognition, when these are deployed as-is on a mobile service robot, we observed that they failed to recognize many objects in real human environments. In this paper, we introduce a learning algorithm in which robots address this flaw by asking humans for help, also known as a symbiotic autonomy approach. In particular, we bootstrap YOLOv2, a state-of-the-art deep neural network and train a new neural network, that we call HHELP, using only data collected from human help. Using an RGB camera and an on-board tablet, the robot proactively seeks human input to assist it in labeling surrounding objects. Pepper, located at CMU, and Monarch Mbot, located at ISR-Lisbon, were the service robots that we used to validate the proposed approach. We conducted a study in a realistic domestic environment over the course of 20 days with 6 research participants. To improve object detection, we used the two neural networks, YOLOv2 + HHELP, in parallel. Following this methodology, the robot was able to detect twice the number of objects compared to the initial YOLOv2 neural network, and achieved a higher mAP (mean Average Precision) score. Using the learning algorithm the robot also collected data about where an object was located and to whom it belonged to by asking humans. This enabled us to explore a future use case where robots can search for a specific person’s object. We view the contribution of this work to be relevant for service robots in general, in addition to Pepper, and Mbot.
Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots
February 21, 2019
1:00 pm
João Cartucho
João Cartucho, a IST alumni at ISR, former MSc student co-supervised by Manuela Veloso and Rodrigo Ventura, was finalist to the Best Paper Award at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018).ISRSeminários
Últimos seminários
Unlocking Latent Discourse Translation in LLMs Through Quality-Aware Decoding
June 17, 2025Large language models (LLMs) have emerged as strong contenders in machine translation. Yet, they often fall behind specialized neural machine…
Speech as a Biomarker for Disease Detection
May 20, 2025Today’s overburdened health systems face numerous challenges, exacerbated by an aging population. Speech emerges as a ubiquitous biomarker with strong…
Enhancing Uncertainty Estimation in Neural Networks
May 6, 2025Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this presentation, I will present…
Improving Evaluation Metrics for Vision-and-Language Models
April 22, 2025Evaluating image captions is essential for ensuring both linguistic fluency and accurate semantic alignment with visual content. While reference-free metrics…



