Unsupervised Learning of probabilistic structured models presents a fundamental tradeoff between richness of captured constraints and correlations versus efficiency and tractability of inference. In this thesis, we propose a new learning framework called Posterior Regularization that incorporates side-information into unsupervised estimation in the form of constraints on the model’s posteriors. The underlying model remains unchanged, but the learning method changes. During learning, our method is similar to the EM algorithm, but we solve a problem similar to Maximum Entropy inside the E-Step to enforce the constraints. We apply the PR framework to two different large scale tasks: Statistical Word Alignments and Unsupervised Part of Speech Induction. In the former, we incorporate two constraints: bijectivity and symmetry. Training using these constraints produces a significant boost in performance as measured by both precision and recall against manually annotated alignments for six language pairs. In the latter we enforce sparsity on the word tag distribution which is overestimated using the default training method. Experiments on six languages achieve dramatic improvements over state-of-the-art results.
Posterior Regularization Framework: Learning Tractable Models with Intractable Constraints
June 22, 2010
1:00 pm
João Graça
I am currently a 4th year PhD student (with MSc degree) in Computer Science Engineering at Instituto Superior Técnico, Technical University of Lisbon and a visiting student at University of Pennsylvania. My advisors are Luisa Coheur, Fernando Pereira and Ben Taskar. My main research interests are Machine Learning and Natural Language Processing. My current focus in on unsupervised learning with high level supervision in the form of constraints. I am a proud member of the Spoken Language Systems Lab (L2F) in Lisbon and of the Penn Research in Machine Learning (PRiML).L2F, INESC-IDSeminários
Últimos seminários
Unlocking Latent Discourse Translation in LLMs Through Quality-Aware Decoding
June 17, 2025Large language models (LLMs) have emerged as strong contenders in machine translation. Yet, they often fall behind specialized neural machine…
Speech as a Biomarker for Disease Detection
May 20, 2025Today’s overburdened health systems face numerous challenges, exacerbated by an aging population. Speech emerges as a ubiquitous biomarker with strong…
Enhancing Uncertainty Estimation in Neural Networks
May 6, 2025Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this presentation, I will present…
Improving Evaluation Metrics for Vision-and-Language Models
April 22, 2025Evaluating image captions is essential for ensuring both linguistic fluency and accurate semantic alignment with visual content. While reference-free metrics…



