In some imaging modalities based on coherent radiation, the noise contaminating an image may contain useful information, thereby necessitating the separation of the noise field rather than just denoising. When the algebraic operation that relates the image and noise is known, the noise component can be estimated in a straightforward manner after denoising. For truly multiplicative noise, such as the Rayleigh, Gamma, and other noises, when the noiseless image is a scale parameter of the probability density function, the noise field is estimated by a simple element-wise division of the noisy image by the denoised estimate. However, not all statistical models describing signal dependent noise (for example, Poisson noise) allow for the noise to be computed by a direct algebraic operation on the noisy observation and the denoised image. To address this, we propose a method for simultaneously estimating the image and separating the noise field, when we do not know the algebraic relation between them. It is assumed that the image is sparse and the noise field is not, and appropriate regularizers are used on them. We use a polynomial representation to relate the image and noise with the observed image, and iteratively estimate the polynomial coefficients, the image, and noise component. Experimental results show that the method correctly estimates the model coefficients and the estimated noise components follow their respective statistical distributions.
Noise Decomposition for Multiplicative and Wide Sense Multiplicative Noise
May 26, 2015
1:00 pm
Manya Afonso
Manya Afonso is a Post-doc at the Instituto de Sistemas e Robótica in Instituto Superior Técnico. He finished his PhD at Instituto Superior Técnico in 2011, while being a researcher at the Instituto de Telecomunicacoes. He previously received the Bachelor of Engineering degree in Electronics and Telecommunication Engineering from Goa University, India in 2003 and Master of Technology in Communication Engineering from the Indian Institute of Technology Delhi in 2005. Afonso's research interests include image processing and analysis, inverse problems, optimization, machine learning, computer vision, and video surveillance. He is a member of the IEEE and the Associação Portuguesa de Reconhecimento de Padrões (APRP).ISR/ISTSeminários
Últimos seminários
Unlocking Latent Discourse Translation in LLMs Through Quality-Aware Decoding
June 17, 2025Large language models (LLMs) have emerged as strong contenders in machine translation. Yet, they often fall behind specialized neural machine…
Speech as a Biomarker for Disease Detection
May 20, 2025Today’s overburdened health systems face numerous challenges, exacerbated by an aging population. Speech emerges as a ubiquitous biomarker with strong…
Enhancing Uncertainty Estimation in Neural Networks
May 6, 2025Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this presentation, I will present…
Improving Evaluation Metrics for Vision-and-Language Models
April 22, 2025Evaluating image captions is essential for ensuring both linguistic fluency and accurate semantic alignment with visual content. While reference-free metrics…



