In this talk, we address the problem of placing sensor probes in the brain such that the system dynamics’ are generically observable. The system dynamics whose states can encode for instance the fire-rating of the neurons or their ensemble following a neural-topological (structural) approach, and the sensors are assumed to be dedicated, i.e., can only measure a state at each time. Even though the mathematical description of brain dynamics is (yet) to be discovered, we build on its observed characteristics and assume that the a good model of the brain activity satisfies fractional-order dynamics.
Although the sensor placement explored in this talk is particularly considering the observability of brain dynamics, the proposed methodology applies to place the minimum number of dedicated sensors to ensure generic observability in discrete-time fractional-order systems for a specified finite interval of time. Finally, an illustrative example of the main results is provided using electroencephalogram (EEG) data.
Minimum Number of Probes for Brain Dynamics Observability
May 12, 2015
1:00 pm
Sérgio Pequito
Sérgio Pequito is a postdoctoral researcher at University of Pennsylvania. He obtained his PhD in Electrical and Computer Engineering from Carnegie Mellon University and Instituto Superior Técnico, through the CMU-Portugal program. Furthermore, he received his BSc and MSc in Applied Mathematics from the Instituto Superior Técnico. Pequito's research consists in understanding the global qualitative behavior of large scale systems from their structural or parametric descriptions and provide a rigorous framework for the design, analysis, optimization and control of large scale (real-world) systems. Pequito was awarded with the best student paper finalist in the Conference on Decision and Control 2009, the ECE Outstanding Teaching Assistant Award at Carnegie Mellon University, and the Carnegie Mellon Graduate Teaching Award (university-wide) honorable mention, both in 2012.GRASP, University of PennsylvaniaSeminários
Últimos seminários
Unlocking Latent Discourse Translation in LLMs Through Quality-Aware Decoding
June 17, 2025Large language models (LLMs) have emerged as strong contenders in machine translation. Yet, they often fall behind specialized neural machine…
Speech as a Biomarker for Disease Detection
May 20, 2025Today’s overburdened health systems face numerous challenges, exacerbated by an aging population. Speech emerges as a ubiquitous biomarker with strong…
Enhancing Uncertainty Estimation in Neural Networks
May 6, 2025Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this presentation, I will present…
Improving Evaluation Metrics for Vision-and-Language Models
April 22, 2025Evaluating image captions is essential for ensuring both linguistic fluency and accurate semantic alignment with visual content. While reference-free metrics…