In this talk we are interested in distributed algorithms for solving separable optimization problems. Many problems in engineering can be formulated as separable optimization problems, i.e., minimizing the sum of P functions subject to the intersection of P sets. Our goal is to solve such problem when the P functions and sets are not known at a single location, but rather distributed across a network with P nodes, each node having access to just one function and set. We present an algorithm based on the alternating direction method of multipliers that requires less communications than the state-of-the-art algorithms. Applications of this work include average consensus, distributed compressed sensing and SVMs, Internet protocols, and distributed model predictive control.
Distributed Algorithms for Separable Optimization
May 8, 2012
1:00 pm
João Mota
João Mota received a M.S. degree in Electrical and Computer Engineering from Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal, in 2008. He is currently working towards his Ph.D. degree in Electrical and Computer Engineering, within the joint program between Carnegie Mellon University, Pittsburgh, PA, and Instituto Superior Técnico, Lisbon, Portugal. His research interests include distributed optimization and control, and sensor networks.IST/CMUSeminários
Últimos seminários
Unlocking Latent Discourse Translation in LLMs Through Quality-Aware Decoding
June 17, 2025Large language models (LLMs) have emerged as strong contenders in machine translation. Yet, they often fall behind specialized neural machine…
Speech as a Biomarker for Disease Detection
May 20, 2025Today’s overburdened health systems face numerous challenges, exacerbated by an aging population. Speech emerges as a ubiquitous biomarker with strong…
Enhancing Uncertainty Estimation in Neural Networks
May 6, 2025Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this presentation, I will present…
Improving Evaluation Metrics for Vision-and-Language Models
April 22, 2025Evaluating image captions is essential for ensuring both linguistic fluency and accurate semantic alignment with visual content. While reference-free metrics…