Falls are very rare and extremely difficult to acquire in free living conditions. Due to this, most of prior work on fall detection has focused on simulated datasets acquired in scenarios that mimic the real-world context, however, the validation of systems trained with simulated falls remains unclear. This work presents a transfer learning approach for combining a dataset of simulated falls and non-falls, obtained from young volunteers, with the real-world FARSEEING dataset, in order to train a set of supervised classifiers for discriminating between falls and non-falls events. The objective is to analyze if a combination of simulated and real falls could enrich the model. This work was developed in the project Symbiotic technology for societal efficiency gains: Deus ex Machina, NORTE-01-0145-FEDER-000026.
Transfer learning approach for fall detection with the FARSEEING real-world dataset and simulated falls
March 21, 2019
1:00 pm